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We discuss some recent results suggesting that certain spatially extended 
dynamical systems naturally evolve toward a state characterized by domains of 
all length scales. The analogy with second-order phase transitions has prompted 
the name "self-organized criticality"; specific results are available for cellular 
automaton models, which can be thought of as caricatures of a sandpile 
undergoing avalances. The potential generality of the results stems from the very 
simple (nonlinear) diffusion dynamics governing the system. 
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1. INTRODUCTION 

This paper concerns the study of spatially extended physical systems. A 
recent resurgence of interest in this subject stems from the success of the 
field of nonlinear dynamics, whose rapid progress in describing temporal 
complexity has spawned vigorous effort) 

The present work takes a rather particular point of view--namely, 
that substantial progress toward understanding the dynamical behavior of 
spatially extended systems can be achieved via the methods of "modern" 
dynamical systems theory. This is not intended to sound radical; however, 
one should recognize that (so far, at least) dynamical systems theory has 
not led to advances of this sort. Relative to the strides made for temporally 
complex behavior, progress on spatiotemporal complexity has been 
maddeningly slow. We are still very much in the "look and see" phase, with 
no organizing principles to parallel, for example, "routes to chaos," phase 
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space reconstruction of attractors, etc. Moreover, powerful tools such as 
the center manifold reduction seem to play a limited role here. 

The main stumbling block is this: the interaction of very many degrees 
of freedom plays an essential role in spatiotemporal dynamical systems. 
(Indeed, in those instances when we can say something significant about 
spatially nontrivial systems, it is because the reduction to a few degrees of 
freedom is possible.) Therefore, the simple and crucial geometrical insights 
of few-degree-of-freedom models are insufficient. The utility of carrying 
over those concepts most useful in the analysis of low-dimensional phase 
space--e.g., measuring spectra of Liapunov exponents--has thus far proved 
inconclusive at best. In effect, we have no corresponding geometrical 
insight into inherently many-degree-of-freedom dynamical systems. 

As a first step toward a general understanding, one wishes to uncover 
examples of spatiotemporal behavior which, though complex, can 
nevertheless be recognized and characterized. Here, we present such an 
example, which is a cellular automaton representing a nonlinear diffusion 
process. Remarkably, the complexity of its dynamics can be understood 
and (statistically) quantified/24) The results are very suggestive, insofar as 
the behavior is reminiscent of the critical point of thermodynamic systems 
undergoing a second-order phase transition. Thus, there is significant struc- 
ture on all length scales simultaneously, which is characterized by power 
law distribution functions. The analogy with critical phenomena is concep- 
tually useful, but there is an important difference: in our automaton, the 
dynamics naturally evolves toward the critical point; no tuning of some 
external parameter is necessary. Consequently, we have called this behavior 
"self-organized criticality. ''(2) 

The contents of this paper are as follows. In the next section we define 
the "sandpile automaton" and review its observed behavior. We turn to a 
discussion of the underlying structure of the automaton's dynamics in 
Section 3 and suggest why this sort of "grainy" diffusion process might be 
widespread among spatially extended systems. The temporal fingerprint of 
self-organized criticality is a power spectrum S( f )  oc f - ~ ;  Section 4 briefly 
discusses this mechanism of generating "flicker noise" in light of some other 
proposed mechanisms which are also based solely on general ideas from 
nonlinear dynamics. Section 5 proposes avenues ripe for further study of 
the phenomenon of self-organized criticality, including the possibility of 
laboratory verification. Finally, we close with a description of a demon- 
stration illustrating these ideas that can be performed in the comfort of 
one's own home. 
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2. SANDPILE  A U T O M A T O N  

In this section, we describe simulations for the "sandpile automaton," 
which is a type of nonlinear diffusion equation. (2> Although the name is 
partly for fun, the underlying issues are usefully thought of in terms of the 
dynamics of sand, for which we all have a certain intuition. 

Imagine building up a sandpile by lightly sprinkling sand a few grains 
at a time (Fig. 1). Eventually, a mound is formed, which is somewhat 
rough in its shape, varying from spot to spot, but has some mean slope. Of 
course, this slope cannot be too great, for then sand would flow. (The 
maximum such slope is called the "angle of repose.") The addition of more 
sand is unpredictible: it may simply nestle where it is sprinkled, or it may 
start a small rearrangement of sand, or it may on occasion trigger a more 
far-reaching collapse of the sandpile--in other words, an avalanche. The 
question we want to answer is: what is the distribution of sandslides 
induced by the addition of sand, once the system has reached statistical 
steady state? 

We begin with a one-dimensional model of this dynamics (Fig. 2). We 
divide space up into an array of cells; the sand is allowed to pile up in a 
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Fig. 1. The formation of a sandpite: artist's conception. 
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Fig. 2. One-dimensional "sandpile" automaton. The state of the system is specified by an 
array of integers representing the height difference between neighboring plateaus. 

column above each cell, the height taking on only integer values. The 
relevant dynamical variable is the local slope z, ,  which is taken to be the 
height difference of the columns to the left and the right of the point n. 

There are two operations. The first is the addition of one unit of sand: 
from the picture, this corresponds to a change in two neighboring slope 
variables: 

Zn-* Z. + l 
(1) 

zn 1 ~ z n  1 -  1 

The other operation is the relaxation of the sandpile in case the slope 
locally exceeds the threshold z*, causing one unit of sand to slide downhill. 
As depicted in Fig. 2, this corresponds to the change 

z .  -~ z ,  - 2 

z.+ 1 ~ z . +  1 + 1 (2) 

Z n _  1 --~ g n _  1 - -  1 

p r o v i d e d  z, > z*, otherwise there is no change. If this looks like a (discrete) 
diffusion operator, that is because it is, as described further in the next 
section. The threshold condition is what makes it a nonl inear  diffusion 
dynamics. 

Finally, we need to specify boundary conditions. We put a wall at one 
end (so that sand never flows out the left side), 

Z o = O  
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and an edge at the other (so that tumbling sand simply "disappears" at the 
right side): 

ZN----~ Z N - - 1  ; ZN_I"-r  ZN_I  + I 

when z N > z*. This choice of boundary conditions is but one possibility; the 
net effect is to create an overall flow of sand from left to right. 

These rules define the dynamics of the cellular automaton, starting 
from any initial configuration {zn}. If any of the slopes zn are above 
threshold, then the system is allowed to relax via successive application of 
rule (2), until zn ~< z* for all n. Then, another unit of sand is added, say at a 
randomly chosen position, and then relaxation is applied (if necessary), 
and so on. 

The results of such a simulation are interesting; in fact, this 1D case is 
simple enough that one can solve the dynamics exactly. For any initial 
configuration, the sandpile evolves to its minimally stable state, defined by 
z, = z* for all n. The effect of adding sand to this state is to cause this unit 
to slide from site to site, until it falls off the edge at n = N, leaving the pile 
at its original state. We call this the minimally stable state, since it is the 
only configuration in which addition of sand necessarily causes a sandslide. 
We may say that this state is at once sensitive and yet robust with respect 
to external noise: sensitive, because a local perturbation propagates 
globally throughout the system; robust, because the configuration {zn} is 
ultimately unaffected by the perturbation. 

The emergence of the minimally stable state in one spatial dimension 
is curious; however, the dynamics of this state is rather bland. Far more 
interesting is the situation in two or more spatial dimensions, as we now 
discuss. 

The automaton rules (1), (2) can be generalized to more than one 
spatial dimension. For example, in 2D, addition of sand corresponds to 

z ( x  - 1, y )  --* z ( x  - 1, y)  - 1 

z(x,  y -  1) ~ z(x,  y -  1)- -  1 

z(x,  y )  ~ z(x ,  y )  + 2 

(3) 

and relaxation to 

z(x,  y )  ~ z(x,  y )  -- 4 

z(x,  y +  1)--, z(x, y_+ 1)+ 1 

z ( x  + 1, y )  --, z ( x  +_ 1, y )  + 1 

(4) 

822/54/5-6-22 
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provided z(x, y ) >  z*, where we have the square array (x, y) for x, y = 
1,..., N. In fact, the correspondence between the sandpile picture and these 
diffusion rules is not as straightforward as in the 1D case; after all, the 
slope is no longer a scalar field, so that the threshold condition is properly 
one on the gradient of the height function. Although a somewhat contorted 
correspondence can be concocted,/2) it is best to consider this as being the 
simplest discrete scalar diffusion dynamics in two dimensions. (Ultimately, 
our interest is not in sandpiles per se, nor in the behavior of any particular 
cellular automaton; rather, we are looking for behavior that might prove 
typical of some large class of dynamical systems with spatial degrees of 
freedom. In this sense, one may view these rules as analogous to 
"Ising-type" models studied in statistical mechanics.) 

Some results are summarized in Figs. 3-5, as we now describe. 
The most important observation is that the minimally stable 

state--with z(x, y) = z* for all (x, y)--is  no longer robust in spatial dimen- 
sions greater that one. A perturbation of this state triggers a catastrophic 
avalanche extending throughout the system. Instead, the system settles 
down to a statistically stationary state, such that on average for each unit 
of sand added one unit falls off the boundary. This stationary state consists 
of locally connected domains, such that disturbance at a single site induces 
a chain reaction affecting all cells within this domain. The fascinating point 
is this: one observes that, at any instant of time, domains of all sizes exist 
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Typical domain structure of the self-organized critical state. Each cluster is triggered 
by a single perturbation at one of the sites of the 100 • 100 array. 
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simultaneously. Figure 3 illustrates this qualitative structure, showing the 
set of  sites triggered by adding a single unit at each of  several different sites. 

On  a more  quanti tat ive note, one can ask for the distribution function 
D(s) of domains  of size s. The answer is that  the distr ibution obeys a power  
law, reminiscent of  the domain  structure of systems tuned to the point  of a 
second-order  phase transition. F i gu re 4  shows a typical distribution 
function for an ar ray  of modest  size, 50 • 50 sites, built up "from scratch," 
i.e., with initial condit ions z(x, y)  = 0 at all sites. One can see that  this fits a 
pret ty respectable power  law for two decades, up to an area of  about  
s = 300; the falloff at large s is a finite-size effect. We believe that  the 
dynamics has driven the system just to the point  where structure on all 
length scales is sustained, so that a simulation on a very large array will 
produce a power law distribution function up to correspondingly large 
domain  sizes. 

The self-organized critical state is also acheived in simulations in three 
spatial dimensions. Figure 5 shows the results of a simulation for a 3D 
array, again showing a power  law distribution, but with a different 
exponent  than in the 2D case. 
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Fig. 4. Domain size distribution for the sandpile built from scratch, 50 x 50 array. Once the 
automaton has reached its statistical stationary state, 100,000 units of sand have been added 
(one at a time) to induce this same number of avalanches. The data have been coarse grained, 
and fit a slope of -1.0. 
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Fig. 5. Domain size distribution for a 50 x 50 x 50 a r r a y ;  50,000 units of sand have been 
added after reaching the stationary state. The data have been coarse grained, and fit a slope 
of - 1.33. 

The fact that this (statistical) dynamical critical state is self-organized 
is a crucial point; the situation stands in contrast to the power law 
distributions observed in equilibrium thermodynamic systems poised at a 
second-order phase transition point. Somehow, the dynamics naturally 
carries the sandpile system to its critical point, i.e., the critical state is an 
attractor of the dynamics. 

To see that this state of affairs is not peculiar to one set of rules, it is 
important that variations of the model do not alter the basic features. We 
have tested a number of such variations (though naturally an infinite num- 
ber of other rules remain). Without belaboring the point, we have found 
that the appearance of a self-organized critical point is a robust property of 
this nonlinear diffusion process. For example, one can start from different 
initial configurations; one can change the boundary conditions; one can 
alter the perturbation rule for "adding sand"; and one can introduce 
quenched disorder by removing (at random) certain bonds in the square 
lattice (so that sand cannot flow along certain bonds). For all these 
variations, we have observed power law distribution functions (2) for 
various quantities such as the avalanche distribution function D(s). 

A detailed description of many of these results can be found in ref. 2. 
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3. D I S C U S S I O N :  G O I N G  B E Y O N D  T H E  S A N D P A I L  

Naturally, the motivation for studying the above automaton goes 
beyond the particular issue of avalanches in sandpiles. In this section we 
want to indicate the general diffusion dynamics underlying the model, and 
explain why it is this represents a potentially important class of systems. 
The main point is this: this picture represents the coarse-grained phase space 
dynamics--both spatially and temporally--of spatially extended (dissipative) 
dynamical systems. 

The first step is to rewrite the automaton rules (1)--(4) in a more 
familiar dynamical form. Let ~(n, t) be some scalar function of discrete 
space n and discrete time t. The usual diffusion equation becomes, allowing 
for a nonconstant diffusion parameter K and a random noise ~, 

~(n, t +  1 ) -  ~g(n, t) = ~ [ K ~ [ ~ ] ]  +#(n, t) (5) 

where ~ is the discrete spatial derivative, e.g., in one dimension 
@ [ ~ ( n , t ) ] =  ~ ( n + l ) - ~ g ( n ) .  (Note that in our automaton ~ is non- 
negative.) The diffusion "parameter" K is really a functional with threshold 
behavior, so that it is zero if the slope @ [ ~ ]  is below some critical value, 
and a constant otherwise. Operating on both sides by the linear operator 
~ ,  one finds that Eq. (5) becomes an equation for z =~[~P] ,  to wit 

z(n, t+ 1) -z (n ,  t)=~2[K(z)z] + ~[~(n,  t)] (6) 

and this is precisely the automaton dynamics (t), (2) in 1D and (3), (4) in 
2D; it is easily implemented in higher dimensions, of course. 

The next question concerns the appropriateness of a threshold-type 
behavior for the diffusion parameter. For the sandpile problem this seems 
quite natural, but there is a more general context in which this behavior is 
relevant. Imagine a phase space filled with very many attractors. (For 
example, each attractor may correspond to a particular time-independent 
spatial configuration of the sandpile.) Then the "microscopic" time-con- 
tinuous dynamics finds its way to some attractor on a short time scale; 
small perturbations have no effect, since the system relaxes back to the 
local attractor. Only on a longer time scale will a sufficiently large pertur- 
bation cause the system to hop into some other basin of attraction, and 
thus into a different long-lived configuration. If we only pay attention to 
the coarse-grained dynamical evolution, then the system obeys a diffusion 
equation of the sort simulated here. On this time scale, and in the presence 
of noise, each attractor is viewed as being a metastable state of the 
dynamics. 

The existence of huge numbers of metastable states is known to be a 
common feature in spatially disordered many-body systems such as spin 
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glasses. However, it also seems to be a common feature of more general 
dissipative dynamical systems possessing many degrees of freedom. For 
example, evidence for huge numbers of coexisting attractors are observed 
in coupled maps, arrays of ordinary differential equations, and in partial 
differential equations. This phenomenon has been termed "attractor 
proliferation," and may prove central in understanding the dynamics of 
many spatially extended systemsD ) In trying to track down the long-term 
statistical behavior of such a system in the presence of noise, one is 
naturally led to dynamics typified by the sandpile automaton. 

The picture of phase space trajectories in an attractor-filled space leads 
immediately to the concept of "dynamical selection of minimally stable 
states. ''t6'7) As long as the total set of attractors fits into a compact phase 
space volume F, one can ask for the expected final state if the system's 
initial conditions are far from equilibrium (i.e., outside the attracting 
volume F). Heuristically (see Fig. 6), in the absence of monstrous basins of 

=========================================================================================== 

- - -  ~ ~ U 3 - Z - . y . S ~ . 3 . S . } Z s  - ,  

Fig. 6. Heuristic demonstrat ion of selection ol minimally stable attractors. A very large num-  
ber of attractors occupies a compact  phase space volume F. Trajectories outside F are likely 
to be "trapped" by those attractors near the boundary of F. 
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attraction, the deterministic trajectory is likely to get trapped by some 
attractor near the surface of F. (Of course, the appeareance of peculiar 
"fingered" basins for interior attractors could alter this simple picture.) 

What is missing from the above picture is the effect of spatial dimen- 
sionality. This is a feature not made explicit in phase space plots; 
nevertheless, we expect dimensionality to play a significant role based on 
physical grounds. What we have at this stage is little more than the 
simulations reported above: in 1D the minimally stable state is achieved, 
but in higher dimensions the minimally stable state is overly sensitive to 
noise, and the system rather achieves a statistical steady state--visiting 
some set of metastable states. The ensuing steady-state fluctuations give rise 
to power law distribution functions, reminiscent of thermodynamic systems 
tuned to their second-order phase transition points. The facinating thing is 
that the present system naturally evolves toward this critical state without 
tuning some external parameter. In effect, the dynamics provides some 
feedback to the evolving domain structure, and the feedback drives the 
system to its statistically stationary state. 

4. T E M P O R A L  B E H A V I O R  A N D  1If NOISE 

The results of our simulations show that the system naturally evolves 
toward a steady state which is characterized by spatial domains of all sizes. 
The size distribution of these minimally stable domains fits a power law. 
We can also inquire as to the temporal behavior of the self-organized 
critical state. It turns out that the power spectrum also exhibits power 
law behavior, S(f),,~f-~, with ~b between 0 and 2; in other words, the 
temporal signature of self-organized criticality is "l/fnoise." (Indeed, a 
mean field theory of the sandpile yield an exponent of ~b - 1.) (3,4) 

We should emphasize that the power law behavior of S(f) is neither 
the goal nor the main result of these models; rather, it is by-product of the 
self-organized critical state, being a direct consequence of the spatial scaling 
structure. Nevertheless, one can hardly say the words "one over f "  without 
drawing a crowd; and of course, it is one of the great mental distractions of 
physics. For this reason, we devote this section to a brief discussion of this 
aspect of the automaton behavior, including some comments concerning 
the possible connection to some other general dynamical 1If mechanisms 
recently reported. 

Consider the automaton in its steady state. The existence of domains 
of all sizes immediately implies temporal fluctuations on all time scales, 
even with input perturbations lasting only a single time step. This is easy to 
understand, since the domains (by virtue of their minimal stability) have 
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the property that a disturbance at a single site spreads throughout the 
domain: the larger the domain, the longer lived the disturbance. 

This expectation is borne out in simulations. (21 Suppose one upsets a 
single site, and measures the lifetime of the ensuing avalanche. After the 
disturbance dies out, one upsets some other site, and so on. (There is no 
need to "reset" the configuration, since the critical state is perforce a 
self-maintaining, dynamic balance.) Figure 7 shows the resulting dis- 
tribution of lifetimes; it follows a tolerable power law. The response to a 
continual "white noise" input perturbation--with each kick localized to a 
single site for a single time step--will be a superposition of the individual 
responses provided the perturbations are sufficiently dilute. (We do not 
know what happens if the input noise is so strong that a single domain is 
externally excited many places at once, but the simple-minded super- 
position picture may well break down in this regime.) Figures 8 and 9 show 
a representative time series and power spectrum, respectively. 

The idea that a distribution of relaxation times, operating 
simultaneously and independently, can lead to 1If noise is an old one. (8} 
The usual van der Ziel argument based on linear relaxation processes has 
to be modified in its details in the present context, (2) but the basic idea is 
nevertheless the same. Again, the interesting new feature is that the 
dynamics naturally carries the spatially extended system into the scaling 
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Fig. 7. Distribution of lifetimes for a 50 x 50 x 50 array; the dashed line has slope -0.95.  
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Fig. 8. Time series generated by superposing randomly the response represented by 
individually perturbed domains, for a 20 x 20 x 20 array. Note the fluctuations on a wide 
range of time scales. 
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Power spectrum for the time series of Fig. 8. The dotted line has slope -0 .98.  The 
crossover to white noise at very low frequencies is a finite-size effect. 
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regime, without the need to specify a priori any distribution of relaxation 
times. 

The appeal of such a "generic" dynamical picture lies in the purported 
"generic" nature of I / f  noise. (9) The sheer breadth of phenomena which (we 
are told) show 1If power spectra is mystifying: the light from quasars, the 
intensity of sunspots, the flow of sand in an hourglass, the water level of 
the Nile river, the membrane potential of a lobster neuron, and even the 
traffic on a Japanese highway, have been reported as displaying l / f  
fluctuations. 

Now, /f one is ready to regard the wide occurrence of 1If noise as 
being due to some common underlying mechanism, then one must search 
for some explanation almost entirely independent of physical details. 
("Almost," since not all systems display I /f  noise.) For this reason, the field 
of nonlinear dynamics seems a good place to search for some such "univer- 
sal" mechanism. We would like to discuss the present mechanism very 
briefly in the context of three other nonlinear dynamical mechanisms that 
have recently appeared in the literature. 

Perhaps the simplest dynamical systems model yielding 1If noise is the 
one-dimensional iterative map of the interval studied by Manneville. (1~ 
This represents a special case of the generic intermittency threshold, in 
which the tangent point coincides with the endpoint of the interval. 
Manneville showed that the ensuing chaotic dynamics has a power 
spectrum that varies as 1 / f ( l n f )  ~ at low frequencies; later, Miracky et al. 
modified the map to get a precise f - %  ~b = 1, dependence. (H) At first blush, 
this looks quite promising, since we know that simple iterative maps are 
good models for a wide variety of physical systems. Unfortunately, this 
mechanism has the failing that it requires precise tuning of some external 
parameter. That is, the problem is simply shifted to explaining why systems 
typically might be sitting at this special parameter value. As we have 
emphasized, the sandpile automaton automatically evolves toward the 
critical state (thus the term "self-organized"). 

Keeler and Farmer discussed precisely this point in their work on an 
array of coupled logistic maps, (12) and showed that their system displayed 
robust intermittency--that is, intermittency that persists over a whole 
parameter interval. Their simulations showed that the low-frequency 
macroscopic behavior of the array fits a f - ~  power law, with a relatively 
large 06 (a value of ~b ~ 2:5 is quoted in their paper, though this exponent 
apparently varies with the external parameter value). Consequently, this 
model has the same basic virtues as our sandpile: are there any differences? 
Perhaps the most fundamental difference is the spatial behavior of these 
systems: Keeler and Farmer show that the logistic array displays "a stable 
natural wavelength," whereas the sandpile automaton has no characteristic 
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length scale. Thus, an experiment which tests the correlations between tem- 
poral and spatial fluctuations could decide between these two alternatives. 

Finally, Huberman and Kerszberg showed how relaxation in 
hierarchical structures can lead to anomalous low-frequency noise 
spectra. (13) Under certain circumstances--that is, for certain hierarchical 
architectures--1/f noise can result. The basic idea is that diffusion between 
different levels in the hierarchy generates a hierarchy of time scales. It is 
difficult to see how our sandpile's critical state--which seems to be well 
described by a collection of independent domains--corresponds to some 
"ultrametric topology." On the other hand, it is possible that at some more 
abstract level, the underlying dynamics may be expressible in these terms. 
Nevertheless, at present it seems simpler to regard the sandpile's 1If 
fluctuations in terms of the old-fashioned picture of van der Ziel's grabbag 
of independent relaxation times. 

5. F U T U R E  V I S T A S  

Our current understanding of the sandpile automaton leads us to sus- 
pect that certain features may be "generic" to spatially extended dynamical 
systems. The main goal, then, is to extract which features these are, and to 
abstract those organizing principles responsible for them. As we now out- 
line, several avenues suggest themselves for future study; our understanding 
of spatiotemporal dynamics in general and self-organized criticality in 
particular is sufficiently immature that any such further work would be 
valuable. 

The question arises as to whether the "critical exponents" measured 
for the automata are in any sense "universal," i.e., do their precise values 
depend on the details of the governing dynamical equations (in which case 
they are not universal) rather than being determined only by gross 
distinctions such as the spatial dimensionality and symmetry (in which case 
there are universality classes)? Our present understanding leads us to 
expect power law distribution functions, but not necessarily universal 
values for the exponents; however, as further rules are tested there may 
well emerge a pattern to the observed values, which would suggest an 
underlying structure waiting to be discovered. One approach to this 
problem is to develop a "mean field" theory to establish "classical" 
exponents; this goal has very recently been accomplished. (3"4) 

A second line of development is to find a still simpler model that is in 
some sense more solvable, so that one need not rely solely on numerical 
simulations. For example, one can remove the inherent randomness of the 
present model by always adding sand at the center of the sandpile, yielding 
the so-called "central seeding model. ''(14) The behavior of this automaton is 
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quite fascinating: the dynamics is purely periodic in time, and the pile 
passes through its minimally stable state during this cycle (followed, of 
course, by a catastrophic avalanche). Nevertheless, the distribution of 
avalanche sizes still follows a power law. The hope is that this model is 
sufficiently regular to allow for a detailed understanding of its dynamical 
behavior. 

Along these lines, one can try to find a "minimal" model that displays 
the essential features, for example, an automaton which has only two states 
per cell (as does the elementary cellular automaton most often encountered 
in the technical literature and on T-shirts). Alternatively, one may revert to 
one spatial dimension with interactions extending beyond nearest 
neighbors. (Some preliminary studies report that it is possible to have 
interactions that destabilize the minimally stable configuration, again 
leading to power law distribution functions. ~15)) 

It is also of interest to establish which features are somehow remnants 
of the gross truncations inherent to the cellular automaton discretized 
space, time, and state variables. For example, essential to the evolving 
picture of self-organized criticality is the presence of a huge number of 
stable or metastable states: can this be a property of smooth dynamical 
systems typified by ordinary and partial differential equations? The answer 
to this seems to be "yes"; in fact, the existence of huge numbers of phase 
space attractors seems to be a fairly common property of spatially coupled 
arrays of nonlinear dynamical systems. The overall ramifications of this 
wealth of attractors are unclear, but the emergence of self-organized critical 
structures is at least a possible outcome, and potentially a generic result. 

Finally, we come to the question of experimental realization of these 
ideas. In a sense, the present system is better adapted to direct experimental 
testing than other recent spatiotemporal models (such as coupled logistic 
maps, or one-dimensional reaction-diffusion equations), in large part due 
to the global predictions of the statistically stationary state and the 
correlations between spatial and temporal fluctuations. In particular, the 
sandpile picture can be taken literally (though we recommend that anyone 
doing this does so with a grain of salt), and examined directly in the 
laboratory. (16) However, other systems are available which possess a 
threshold-type nonlinear relaxation reminiscent of the present automaton 
dynamics. For example, it has been suggested that magnetic flux creep in 
type II superconductors fits this picture. (~v~ The basic idea is that impurities 
can pin magnetic flux inside the bulk material, allowing the superconductor 
to maintain a far-from-equilibrium stationary state; relaxation proceeds 
only if the local vortex gradient exceeds a critical threshold value (see, e.g., 
ref. 18). In fact, flux is expelled in a series of "jumps," as flux bundles of 
varying magnitudes �9 become depinned. It is possible to measure the dis- 
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tribution D(~b)d~b of these jumps, as the system relaxes due to thermal 
activation; the signature of self-organized criticality would be that D(~)  is 
proportional to some power of 45. 4 

Beyond such specifically tailored systems, our suspicion is that 
self-organized criticality is a consequence of only some general dynamical 
circumstances, and as such may be ubiquitous. In any event, further work 
is required to bring about any deeper understanding of the connection 
between the sandpile automaton and particular physical realizations. 

6. A H O M E  E X P E R I M E N T  

As we have repeatedly emphasized, the ideas suggested by the 
dynamics of our nonlinear diffusion automaton are of interest mainly 
because of their potential generality. The concepts of domains possessing 
local minimal stability, pieced together to form a globally self-organized 
critical state; the power law spatial distribution functions; and the accom- 
panying "flicker noise" temporal fluctuation spectrum are the main features 
we suggest may be found in many spatially extended nonequilibrium 
systems. From experience in both critical phenomena and low-dimensional 
dynamical systems, the possibility of genericity and universality lead us to 
take seriously the results we have presented, with tongue in cheek, using 
the language of "sandpiles." 

Having said this, however, it remains true that real sandpiles offer an 
extraordinarily charming demonstration, and in the comfort of one's own 
home. Indeed, some sophisticated versions of sandpile-type experiments 
have been reported recently (using both glass microspheres and irregularly 
shaped aluminum oxide grains)C16}; however, we now describe a poor man's 
version, aimed more toward leisure-time observation than toward precision 
measurement. 

To demonstrate self-organized criticality, one needs a shoebox and a 
cup or two of sand; salt or pepper will do in a pinch. The sand should be 
gathered up as steeply as possible into one corner of the box. One can try 
to directly mimic the sandpile automaton by sprinkling additional sand 
onto the peak; however, a nice alternative is to very lightly dampen the 
sand with water. The angle of repose (i.e., the threshold slope) is larger for 
wet sand, so as the water evaporates one observes a sequence of 
slides--some very small, others quite large--occurring at random sites. The 
evaporation process can be sped up by placing the box on a warm surface, 
or under direct sunlight. 

4 Actually, pure thermal activation would lead to a gradual but inexorable degradation 
toward the zero flux equilibrium state. To maintain critically indefinitely, one needs a 
mechanism to (randomly) add flux to compensate this leakage. 
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